198843 VU Datenanalyse II: Text Mining

Wintersemester 2021/2022 | Stand: 21.03.2023 LV auf Merkliste setzen
198843
VU Datenanalyse II: Text Mining
VU 3
5
wöch.
jährlich
Englisch

Under the successful completion of this course students understand the basics of textual data analysis. They acquire the ability to use selected methods of textual data analysis and are capable of interpreting data and presenting it visually and verbally.

  • Technological and theoretical backgrounds of quantitative text analysis.

  • Examples of quantitative text analysis in different fields, mainly from media studies.

  • Practical skills to manage, manipulate and analyse textual data in R.

  • Basic programming skill in R.

Presentation of lecture slides by lecturer; hands-on exercises using analysis examples; and presentation of exercises and mini projects by participants.

Participants are graded through marks of written exams and in-class presentation of their mini projects. Details will be announced in the first session.

  • Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology. Sage.

  • Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 1–31. https://doi.org/10.1093/pan/mps028

  • Welbers, K., Van Atteveldt, W., & Benoit, K. (2017). Text Analysis in R. Communication Methods and Measures, 11(4), 245–265. https://doi.org/10.1080/19312458.2017.1387238

  • Manning, C. D., & Schütze, H. (2001). Foundations of statistical natural language processing. Cambridge (Mass.): MIT press.

  • Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, N.J.: Pearson Prentice Hall.

  • Hastie, T. J., Tibshirani, Robert J, & Friedman, Jerome H. (2013). The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer.

Participants are required to use their (laptop) computers (Windows, Linux, Mac) to the class for hands-on exercises. The course does not require the knowledge of R programming, but familiarity with general concepts of computer programing (e.g., variables, control structures) is needed. Basic knowledge of statistics (e.g., chi-square test and linear regression) is beneficial.

The acceptance procedure is based on prioritised randomisation. Students advanced in completion of the Digital Science minor get precedence. Students who completed module 1 (Introduction to Programming) and 3a (Data Analysis I) will be accepted in the first place. 

siehe Termine
Gruppe 1
Datum Uhrzeit Ort
Mi 06.10.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 13.10.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 20.10.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 27.10.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 03.11.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 10.11.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 17.11.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 24.11.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 01.12.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 15.12.2021
08.15 - 11.00 eLecture - online eLecture - online
Mi 12.01.2022
08.15 - 11.00 eLecture - online eLecture - online
Mi 19.01.2022
08.15 - 11.00 eLecture - online eLecture - online
Mi 26.01.2022
08.15 - 11.00 eLecture - online eLecture - online
Mi 02.02.2022
08.15 - 11.00 eLecture - online eLecture - online