198843 VU Datenanalyse II: Text Mining

Wintersemester 2024/2025 | Stand: 25.04.2024 LV auf Merkliste setzen
198843
VU Datenanalyse II: Text Mining
VU 3
5
wöch.
jährlich
Englisch

Under the successful completion of this course students understand the basics of textual data analysis. They acquire the ability to use selected methods of textual data analysis and are capable of interpreting data and presenting it visually and verbally.

  • Technological and theoretical backgrounds of quantitative text analysis.

  • Examples of quantitative text analysis in different fields, mainly from media studies.

  • Practical skills to manage, manipulate and analyse textual data in R.

  • Basic programming skill in R.

Presentation of lecture slides by lecturer; hands-on exercises using analysis examples; and presentation of exercises and mini projects by participants.

Participants are graded through marks of written exams and in-class presentation of their mini projects. Details will be announced in the first session.

  • Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology. Sage.

  • Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 1–31. https://doi.org/10.1093/pan/mps028

  • Welbers, K., Van Atteveldt, W., & Benoit, K. (2017). Text Analysis in R. Communication Methods and Measures, 11(4), 245–265. https://doi.org/10.1080/19312458.2017.1387238

  • Manning, C. D., & Schütze, H. (2001). Foundations of statistical natural language processing. Cambridge (Mass.): MIT press.

  • Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, N.J.: Pearson Prentice Hall.

  • Hastie, T. J., Tibshirani, Robert J, & Friedman, Jerome H. (2013). The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer.

Participants are required to use their (laptop) computers (Windows, Linux, Mac) to the class for hands-on exercises. The course does not require good knowledge of R programming, but familiarity with general concepts of computer programing (e.g., variables, control structures) is needed. Basic knowledge of statistics (e.g., chi-square test and linear regression) is beneficial.

The acceptance procedure is based on prioritised randomisation. Students advanced in completion of the Digital Science minor get precedence. Students who completed module 1 (Introduction to Programming) and 3a (Data Analysis I) will be accepted in the first place. 

siehe Termine
Gruppe 1
Datum Uhrzeit Ort
Mo 07.10.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 14.10.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 21.10.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 28.10.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 04.11.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 11.11.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 18.11.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 25.11.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 02.12.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 09.12.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 16.12.2024
08.30 - 11.15 eLecture - online eLecture - online
Mo 13.01.2025
08.30 - 11.15 eLecture - online eLecture - online
Mo 20.01.2025
08.30 - 11.15 eLecture - online eLecture - online
Mo 27.01.2025
08.30 - 11.15 eLecture - online eLecture - online