724058 UE Mathematics II for Chemical Students

summer semester 2024 | Last update: 27.02.2024 Place course on memo list
724058
UE Mathematics II for Chemical Students
UE 1
1
weekly
annually
German

After successfully completing the module, students are able to:

· Understand and apply propositional logic, set theory and complex numbers

Understand and apply linear algebra, including groups, vector spaces, generating systems, bases, linear maps, matrices, systems of linear equations, orthogonal projection, orthonormal bases, norm, scalar and cross product, determinant, eigenvalue and vector, coordinate transformation and orthogonal maps

· use linear algebra to solve chemical and physical problems

· to discuss, deepen and present mathematical content

· to master scientific arguments in connection with mathematical content

· understand and apply the connection between mathematics and chemistry

Understand one- and multidimensional real analysis, including sequences, limits, Banach and Hilbert spaces, derivatives, partial derivatives, total differential, two- and three-legged, implicit differencing, one- and multidimensional antiderivatives, series, power series, radius of convergence, one- and multidimensional Taylor series, definite and improper integrals, approximations, Fourier series, domain and curve integrals, and the theory of ordinary and partial differential equations

· apply analysis to solve chemical and physical problems

· to relate the mathematical concepts to real phenomena and processes.

apply mathematical concepts to real chemical and physical phenomena and processes.

Discussion, deepening and practice of the content of the Mathematics II lecture for chemical and physical questions, practice in scientific argumentation and in the presentation of mathematical content.

see dates
Group 0
Wrulich-Waldner F.
Date Time Location
Fri 2024-03-15
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-03-22
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-04-12
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-04-19
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-04-26
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-05-03
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-05-10
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-05-17
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-05-24
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-05-31
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-06-07
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-06-14
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-06-21
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Fri 2024-06-28
08.30 - 09.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 1
Group 1
Wrulich-Waldner F.
Date Time Location
Fri 2024-03-15
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-03-22
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-04-12
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-04-19
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-04-26
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-05-03
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-05-10
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-05-17
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-05-24
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-05-31
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-06-07
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-06-14
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-06-21
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2
Fri 2024-06-28
09.30 - 10.15 L.EG.200 L.EG.200 Barrier-free Übungen Gruppe 2