702714 VU/4 VU Subject-Specific Fundamentals and Core Skills 2: Nonlinear Functional Analysis

winter semester 2019/2020 | Last update: 11.12.2019 Place course on memo list
702714
VU Subject-Specific Fundamentals and Core Skills 2: Nonlinear Functional Analysis
VU 4
7,5
weekly
annually
English

Students who have completed the course have
understood the content of the lectures and are able to reproduce and to apply it. They are able to acquire similar contents independently.

Selected Topics in Nonlinear Functional Analysis and the necessary prerequisites from Banach space theory.

The planned topics include:

  • Banach spaces with "nice" convexity and/or differentiability properties
  • superreflexive Banach spaces
  • different types of bases in Banach spaces
  • accretive operators
  • nonlinear semigroups

Continuous assessment (based on regular written and/or oral contribution by participants).

Course examination according to § 7, statute section on "study-law regulations"

  • Y. Benyamini, J. Lindenstrauss: Geometric Nonlinear Functional Analysis. Volume 1. American Mathematical Society, Providence, RI,2000
  • F. Albiac, N. J. Kalton: Topics in Banach Space Theory, Second Edition. Springer Verlag 2016
  • I. Miyadera: Nonlinear Semigroups. American Mathematical Society, Providence, RI, 1992
  • J. Diestel: Sequences and Series in Banach Spaces. Springer Verlag, 1984

not applicable
02.10.2019
Group 0
Date Time Location
Wed 2019-10-02
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-10-03
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-10-09
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-10-10
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-10-16
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-10-17
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-10-23
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-10-24
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-10-30
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-10-31
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-11-06
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-11-07
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-11-13
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-11-14
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-11-20
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-11-21
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-11-27
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-11-28
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-12-04
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-12-05
14.15 - 16.00 Seminarraum Seminarraum
Wed 2019-12-11
12.15 - 14.00 Seminarraum Seminarraum
Thu 2019-12-12
14.15 - 16.00 Seminarraum Seminarraum
Wed 2020-01-08
12.15 - 14.00 Seminarraum Seminarraum
Thu 2020-01-09
14.15 - 16.00 Seminarraum Seminarraum
Fri 2020-01-10
09.00 - 13.00 Seminarraum Seminarraum
Wed 2020-01-22
12.15 - 14.00 Seminarraum Seminarraum
Thu 2020-01-23
14.15 - 16.00 Seminarraum Seminarraum
Wed 2020-01-29
12.15 - 14.00 Seminarraum Seminarraum
Thu 2020-01-30
14.15 - 16.00 Seminarraum Seminarraum