844192 VU Mechanics of Materials

winter semester 2019/2020 | Last update: 24.07.2020 Place course on memo list
844192
VU Mechanics of Materials
VU 3
4
weekly
annually
German

Upon successful completion of both the course and the tutorial of “Strength of Materials and Mechanics of Materials” the students are able to perform linear and nonlinear stress analyses of members subjected to statical and cyclic loading.

In the course the following topics are covered:

  • yield criteria and fracture criteria,
  • nonlinear elastic and inelastic material behavior,
  • principles of virtual work,
  • stress concentrations,
  • linear-elastic fracture mechanics,
  • cyclic loading,
  • elastic-plastic material behavior,
  • plastic hinge theory and
  • limit theorems of plasticity theory.

In the lectures mathematical models of elasticity theory, plasticity theory and linear elastic fracture mechanics are derived at the blackboard step by step. Special emphasis is laid on the assumptions and simplifications underlying the respective theories and the resulting restrictions concerning applications of the mathematical models. The models are applied for solving relatively simple engineering problems.

Two exams, one focusing on theory and one on applications.

H. Mang und G. Hofstetter: Festigkeitslehre, Springer, 2008

R. Stark: Festigkeitslehre - Aufgaben und Lösungen, Springer 2006

R. Bürgel: Festigkeitslehre und Werkstoffmechanik, Vieweg, 2005

see dates
Group 0
Date Time Location
Mon 2019-10-07
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-10-14
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-10-21
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-10-28
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-11-04
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-11-11
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-11-11
14.15 - 17.00 rr 14 rr 14 Barrier-free
Mon 2019-11-18
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-11-25
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2019-12-02
14.15 - 17.00 rr 14 rr 14 Barrier-free
Mon 2019-12-09
14.15 - 17.00 rr 14 rr 14 Barrier-free
Mon 2020-01-13
14.15 - 17.00 rr 14 rr 14 Barrier-free
Mon 2020-01-20
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Mon 2020-01-27
14.15 - 17.00 HSB 8 HSB 8 Barrier-free
Thu 2020-02-13
14.15 - 17.15 HSB 3 HSB 3 Barrier-free Klausurtermin